INVITATION TO INTER-UNIVERSAL TEICHMÜLLER THEORY ($2+2$ HOUR VERSION)

Shinichi Mochizuki (RIMS, Kyoto University)

> http://www.kurims.kyoto-u.ac.jp/~motizuki "Travel and Lectures"
§1. Hodge-Arakelov-theoretic Motivation
§2. Teichmüller-theoretic Deformations
§3. The Log-theta-lattice
§4. Inter-universality and Anabelian Geometry

§1. Hodge-Arakelov-theoretic Motivation

We begin with a concrete argument. Suppose that $h \in \mathbb{R}_{\geq 0}$ is a quantity that we wish to bound from above, and that, for some integer $N \geq 2$, we know that the equality

$$
N \cdot h=h
$$

holds. Then an easy algebraic manipulation shows that

$$
(N-1) \cdot h=0, \quad \text { i.e., } \quad h=0 .
$$

An easy variant of this argument involves a "relatively small" constant $C \in \mathbb{R}$ for which the inequality

$$
N \cdot h \leq h+C
$$

holds; this inequality implies that

$$
(N-1) \cdot h \leq C, \quad \text { i.e., } \quad h \leq \frac{1}{N-1} \cdot C
$$

- that is to say, that h can indeed be bounded from above, as desired.

Next, we consider elliptic curves. For l a prime number, the module of l-torsion points associated to a Tate curve $E \stackrel{\text { def }}{=} \mathbb{G}_{m} / q^{\mathbb{Z}}$ (over, say, a p-adic field or \mathbb{C}) fits into a natural exact sequence:

$$
0 \longrightarrow \boldsymbol{\mu}_{l} \longrightarrow E[l] \longrightarrow \mathbb{Z} / \mathbb{Z} \longrightarrow 0
$$

That is to say, one has canonical objects as follows:
a "multiplicative subspace" $\boldsymbol{\mu}_{l} \subseteq E[l]$ and "generators" $\pm 1 \in \mathbb{Z} / l \mathbb{Z}$
In the following, we fix an elliptic curve E over a number field F and a prime number $l \geq 5$. Also, we suppose that E has stable reduction at all finite places of F. Then, in general, $E[l]$ does not admit
a global "multiplicative subspace" and "generators"
that coincide with the above canonical "multiplicative subspace" and "generators" at all finite places where E has bad multiplicative reduction!

Nevertheless, let us suppose (!!) that such global objects do in fact exist. Then, if we denote by $E \rightarrow E^{*}$ the isogeny obtained by forming the quotient of E by the "global multiplicative subspace", then, at each finite prime of bad multiplicative reduction, the respective q-parameters satisfy the following relation:

$$
q_{E}^{l}=q_{E^{*}}
$$

If we write $\log \left(q_{E}\right), \log \left(q_{E^{*}}\right)$ for the arithmetic degrees $\in \mathbb{R}$ determined by these q-parameters, then the above relation takes on the following form:

$$
l \cdot \log \left(q_{E}\right)=\log \left(q_{E^{*}}\right) \in \mathbb{R}
$$

On the other hand, if we denote the respective heights of the elliptic curves by $\mathrm{ht}_{E}, \mathrm{ht}_{E^{*}} \in \mathbb{R}$, then we may conclude that

$$
\mathrm{ht}_{(-)} \approx \frac{1}{6} \cdot \log \left(q_{(-)}\right)
$$

(where " \approx " means "up to a discrepancy bounded by a constant"). Moreover, by the famous computation concerning differentials due to Faltings (1983), one knows that:

$$
\mathrm{ht}_{E^{*}} \lesssim \mathrm{ht}_{E}+\log (l)
$$

Thus, just as in the argument given prior to the present discussion of elliptic curves, we conclude that

$$
l \cdot \mathrm{ht}_{E} \lesssim \mathrm{ht}_{E}+\log (l), \quad \text { i.e., } \quad \mathrm{ht}_{E} \lesssim \frac{1}{l-1} \cdot \log (l) \lesssim \text { constant }
$$

- that is to say, that the height ht ${ }_{E}$ of the elliptic curve E can be bounded from above, and hence (under suitable hypotheses) that there are only finitely many isomorphism classes of elliptic curves E that admit a "global multiplicative subspace".

Ultimately, we would like to generalize the above argument to the case of general elliptic curves for which "global multiplicative subspaces", etc. do not necessarily exist. But, before doing so, we would like to consider an approach that is slightly different from the above argument, still under the (unrealistic!) assumption that such global objects do indeed exist.

To this end, it is necessary to "review" the Fundamental Theorem of Hodge-Arakelov Theory under this assumption that such global objects do indeed exist.

The Fundamental Theorem of Hodge-Arakelov Theory may be formulated as follows:

$$
\Gamma\left(E^{\dagger}, \mathcal{L}\right)^{<l} \quad \xrightarrow{\sim} \quad \bigoplus_{j=-l^{*}}^{l^{*}}\left(\underline{\underline{q^{j}}}{ }^{j^{2}} \cdot \mathcal{O}_{F}\right) \otimes F
$$

- where
- $E^{\dagger} \rightarrow E$ is the "universal vectorial extension" of E;
. " $<l$ " is the "relative degree" w.r.t. this extension; $l * \stackrel{\text { def }}{=}(l-1) / 2$;
- \mathcal{L} is a line bundle that arises from a (nontrivial) 2-torsion point;
. " q " is the q-parameter at bad places of $F ; \underline{\underline{q}} \stackrel{\text { def }}{=} q^{1 / 2 l}$;
- the LHS admits a Hodge filtration $F^{-i} \stackrel{\text { s.t. } F^{-i} / F^{-i+1} \text { is (roughly) }{ }^{\text {LHA }} \text { (}}{ }$

$$
\xrightarrow[\rightarrow]{\sim} \omega_{E}^{\otimes(-i)} \quad\left(i=0,1, \ldots, l-1 ; \omega_{E}=\text { cotang. bun. at the origin }\right) ;
$$

- the RHS admits a natural Galois action compatible with " \bigoplus ".

This isom. is, a priori, only defined $/ F$, but is in fact (essentially) compatible with the natural integral structures/metrics at all places of F.

A similar isom. may be considered over the moduli stack of ell. curves. The proof of such an isom. is based on a computation, which shows that the degrees [-] of the vector bundles on either side of the isom. coincide:

$$
\begin{gathered}
\frac{1}{l} \cdot \operatorname{LHS} \approx-\frac{1}{l} \cdot \sum_{i=0}^{l-1} i \cdot\left[\omega_{E}\right] \approx-\frac{l}{2} \cdot\left[\omega_{E}\right] \\
\frac{1}{l} \cdot \mathrm{RHS} \approx-\frac{1}{l^{2}} \cdot \sum_{j=1}^{l^{*}} j^{2} \cdot[\log (q)] \approx-\frac{l}{24} \cdot[\log (q)]=-\frac{l}{2} \cdot\left[\omega_{E}\right]
\end{gathered}
$$

On the other hand, returning to the situation over number fields, since F^{i} is not compatible with the above direct sum decomposition, it follows that, by projecting to the factors of this direct sum decomposition, one may construct a sort of relative of the so-called "arithmetic Kodaira-Spencer morphism", i.e., for (most) j, a (nonzero) morphism of line bundles:

$$
\left(\mathcal{O}_{F} \approx\right) F^{0} \hookrightarrow \underline{\underline{q}}^{j^{2}} \cdot \mathcal{O}_{F}
$$

Since, moreover, $\operatorname{deg}_{\operatorname{arith}}\left(F^{0}\right) \approx 0$, it follows that, if we denote the height determined by the logarithmic differentials $\left.\Omega_{\mathcal{M}}^{\log }\right|_{E}$ associated to the moduli stack of elliptic curves by ht $E \stackrel{\text { def }}{=} 2 \cdot \operatorname{deg}_{\text {arith }}\left(\omega_{E}\right)=\operatorname{deg}_{\text {arith }}\left(\left.\Omega_{\mathcal{M}}^{\text {log }}\right|_{E}\right)$, then we obtain an inequality (!) as follows:

$$
\frac{1}{6} \cdot \operatorname{deg}_{\text {arith }}(\log (q))=\mathrm{ht}_{E}<\text { constant }
$$

In fact, of course, since the global mult. subspace and generators which play an essential role in the above argument do not, in general, exist, this argument cannot be applied immediately in its present form.

This state of affairs motivates the following approach, which may appear somewhat far-fetched at first glance! Suppose that the assignment

$$
\left\{\underline{\underline{q}}^{j^{2}}\right\}_{j=1, \ldots, l^{*}} \mapsto \quad \underline{\underline{q}}
$$

somehow determines an automorphism of the number field F ! Such an "automorphism" necessarily preserves degrees of arith. line bundles. Thus, since the absolute value of the degree of the RHS of the above assignment is "small" by comparison to the absolute value of the (average!) degree of the LHS, we thus conclude that a similar inequality (!) holds:

$$
\frac{1}{6} \cdot \operatorname{deg}_{\operatorname{arith}}(\log (q))=\mathrm{ht}_{E}<\text { constant }
$$

Of course, such an automorphism of a NF does not in fact exist!! On the other hand, what happens if we regard the " $\left\{\underline{q}^{j^{2}}\right\}$ " on the LHS and the " $\underline{\underline{q}}$ " on the RHS as belonging to distinct copies of "conventional ring/scheme theory" = "arithmetic holomorphic structures", and we think of the assignment under consideration

$$
\left\{\underline{\underline{q}}^{j^{2}}\right\}_{j=1, \ldots, l *} \mapsto \quad \underline{\underline{q}}
$$

- i.e., which may be regarded as a sort of "tautological solution" to the

"obstruction to applying HA theory to diophantine geometry"

- as a sort of quasiconformal map between Riemann surfaces equipped with distinct holomorphic structures?

Remark: The method of first preparing a "supplementary stage" on which a "taut. solution" holds, then proceeding to compare this supplementary stage with the "original stage" (i.e., isomorphic? almost isom'ic?) is a standard tool that is frequently applied in arithmetic geometry, or, indeed, in mathematics in general. Put another way, this method consists of allowing ourselves first to acquire the "taut. solution" for free and then proceeding to calculate the costs incurred as a result of this acquisition.

Classical examples of "taut. solutions": The mechanism (which dates back to ancient civilizations!) whereby one applies borrowed assets to conduct business, which leads to the creation of new assets that render it possible to reimburse the borrowed assets with interest. The introduction of indeterminates and algebraic manipulations into a situation in which only addition, subtraction, multiplication, and division of rational numbers are known. The introduction of abstract "fields" and Galois groups into a situation in which only explicit formulas via radicals for roots of equations of degree 2 to 4 are known.

That is to say, (returning to the above discussion of elliptic curves over number fields) this approach allows us to realize the assignment under consideration, albeit at the cost of partially dismantling conventional ring/sch. theory. On the other hand, this approach requires us

to compute just how much of a distortion occurs

as a result of dismantling $=$ deforming conventional ring/scheme theory. This vast computation is the content of IUTeich.

In conclusion, at a concrete level, the "distortion" that occurs at the portion labeled by the index j is (roughly)

$$
\leq j \cdot\left(\log -\text { diff }_{F}+\log -\operatorname{cond}_{E}\right)
$$

In particular, by the exact same computation (i.e., of the "leading term" of the average over j) as the computation discussed above in the case of the moduli stack of elliptic curves, we obtain the inequality of the so-called Szpiro Conjecture ($\Longleftrightarrow \underline{\text { ABC Conjecture }}$):
$\frac{1}{6} \cdot \operatorname{deg}_{\operatorname{arith}}(\log (q))=\operatorname{ht}_{E} \leq(1+\epsilon)\left(\log -\right.$ diff $_{F}+\log$-cond $\left.{ }_{E}\right)+$ constant

Remark: The equality " $N \cdot h=h$ " considered above corresponds to the "tautological solution" $\Longleftrightarrow " N \cdot h^{\text {LHS }}=h^{\text {RHS" }}$

- i.e., where one distinguishes the LHS and RHS " h 's". Once one allows for the ensuing distortions, one may then identify these two " h 's" and conclude that " $N \cdot h \leq h+C$ " \Longleftrightarrow the Szpiro Conjecture inequality.

§2. Teichmüller-theoretic Deformations

Classical Teichmüller theory over \mathbb{C} :

Relative to a canonical coordinate $z=x+i y$ (associated to a square differential) on the Riemann surface, Teich. deformations are given by

$$
z \mapsto \zeta=\xi+i \eta=K x+i y
$$

- where $1<K<\infty$ is the dilation factor.

Key point: one holomorphic dim., but two underlying real dims., of which one is dilated/deformed, while the other is left fixed/undeformed!

p-adic Teichmüller theory:

- \boldsymbol{p}-adic canonical liftings of a hyperbolic curve in positive characteristic equipped with a nilpotent indigenous bundle
- canonical Frobenius liftings over the ordinary locus of the moduli stack of curves, as well as over the tautological curve - cf. the metric on the Poincaré upper half-plane, Weil-Petersson metric in the theory/ \mathbb{C}.

Analogy betw. IUTeich and \boldsymbol{p} Teich (cf. univ. ell. curve $/ \mathbb{P}^{1} \backslash\{0,1, \infty\}!$): conventional scheme theory $/ \mathbb{Z} \longleftrightarrow$ scheme theory $/ \mathbb{F}_{p}$ number field (+ fin. many places) \longleftrightarrow hyperbolic curve in pos. char. once-punctured elliptic curve/NF \longleftrightarrow nilpotent indigenous bundle log- Θ-lattice $\longleftrightarrow p$-adic canonical lifting + canonical Frob. lifting

The arithmetic case: addition and multiplication, cohom. dim.:
Regard the ring structure of rings such as \mathbb{Z} as a

one-dimensional "arithmetic holomorphic structure"!

- which has two underlying combinatorial dimensions!
"addition" and "multiplication"

$$
(\mathbb{Z},+)
$$

one combinatorial dim. one combinatorial dim.

- cf. the two cohomological dims. of the absolute Galois group of
- a (totally imaginary) number field $F / \mathbb{Q}<\infty$,
- a p-adic local field $k / \mathbb{Q}_{p}<\infty$,
(Note: the pro-l-related portion of $\operatorname{Gal}\left(\overline{\mathbb{Q}}_{p} / \mathbb{Q}_{p}\right)$ is $\left.\approx \mathbb{Z}_{l} \rtimes \mathbb{Z}_{l}^{\times}\right)$,
as well as the two underlying real dims. of
- \mathbb{C}^{\times}.

Units and value groups:

In the case of a p-adic local field $k / \mathbb{Q}_{p}<\infty$, one may also think of these two underlying combinatorial dimensions as follows:

$$
\mathcal{O}_{k}^{\times} \quad \subseteq k^{\times} \quad \rightarrow \quad k^{\times} / \mathcal{O}_{k}^{\times}(\cong \mathbb{Z})
$$

one combinatorial dim. one combinatorial dim.
— cf. the direct product decomp. in the complex case: $\mathbb{C}^{\times}=\mathbb{S}^{1} \times \mathbb{R}_{>0}$. In IUTeich, we shall deform the holom. str. of the number field by dilating the value groups via the theta function, while leaving the units undilated!

§3. The Log-theta-lattice

Noncommutative (!) 2-dim. diagram of Hodge theaters " \bullet ":

2 dims. of the diagram $\longleftrightarrow \mathbf{2}$ comb. dims. of a p-adic local field!

Analogy between IUTeich and p Teich (cf. also the Witt vectors!):
$\bullet=$ a copy of scheme theory $/ \mathbb{Z} \longleftrightarrow$ a copy of scheme theory $/ \mathbb{F}_{p}$
$\uparrow=\mathfrak{l o g}$-link $=$ gluing betw. two copies \longleftrightarrow the Frob. mor. in pos. char.
$\longrightarrow=\Theta$-link $=$ gluing betw. two copies $\longleftrightarrow\left(p^{n} / p^{n+1} \rightsquigarrow p^{n+1} / p^{n+2}\right)$

[$\Theta^{ \pm e l l}$ NF-] Hodge theaters:

A " $\left[\Theta^{ \pm e l l} \mathrm{NF}-\right]$ Hodge theater" is a model of the conventional schemetheoretic arithmetic geometry surrounding an elliptic curve E over a number field F. At a more concrete level, it is a complicated system of abstract monoids and Galois groups/arith. fund. gps. that arise naturally from E / F and its various localizations.
The principle that underlies this system: the system serves as
a bookkeeping apparatus for the \boldsymbol{l}-tors. points that allows one to simulate a global multiplicative subspace + generators (cf. §1)! $\rightsquigarrow \mathbb{F}_{l}^{*}-, \mathbb{F}_{l}^{\rtimes \pm}$-symmetries (where $\mathbb{F}_{l}^{*} \stackrel{\text { def }}{=} \mathbb{F}_{l}^{\times} /\{ \pm 1\}, \quad \mathbb{F}_{l}^{\rtimes \pm} \stackrel{\text { def }}{=} \mathbb{F}_{l} \rtimes\{ \pm 1\}$)

Hint that underlies the construction of this apparatus: structure of \boldsymbol{p}-Hecke correspondence special fiber; global multiplicative subspace on the moduli stack of elliptic curves over \mathbb{Q}_{p}, as in p-adic Hodge theory

$$
(p \text {-adic Tate module }) \otimes(p \text {-adic ring of fns. })
$$

... "combinatorial rearrangement" of basepoints by means of a mysterious ' \otimes '!
\longleftrightarrow the absolute anabelian geometry applied in a Hodge theater! $=$ "invariant" w.r.t. two distinct roles played by 'ring of fns.'

log-Link:

At nonarchimedean v of the number field F, the ring structures on either side of the log-link are related by a non-ring-homomorphism (!)

$$
\log _{v}: \mathcal{O}_{\bar{k}}^{\times} \rightarrow \bar{k}
$$

- where \bar{k} is an algebraic closure of $k \stackrel{\text { def }}{=} F_{v} ; G_{v} \stackrel{\text { def }}{=} \operatorname{Gal}(\bar{k} / k)$.

Key point: The log-link is compatible with the isomorphism

$$
\Pi_{v} \xrightarrow{\sim} \Pi_{v}
$$

between the arithmetic fundamental groups Π_{v} on either side of the log-link, relative to the natural actions via $\Pi_{v} \rightarrow G_{v}$. Moreover, if one allows v to vary, the $\mathfrak{l o g}$-link is also compatible with the action of the global absolute Galois groups. Finally, at archimedean v of F, one has an analogous theory.

$\underline{\Theta}$-Link:

At bad nonarchimedean v of the number field F, the ring structures on either side of the Θ-link are related by a non-ring-homomorphism (!)

$$
\mathcal{O}_{\bar{k}}^{\times} \xrightarrow{\sim} \mathcal{O}_{\bar{k}}^{\times} ; \quad\left(\left.\Theta\right|_{l \text {-tors }}\right)^{\mathbb{N}}=\left\{\underline{\underline{q}}^{j^{2}}\right\}_{j=1, \ldots, l *}^{\mathbb{N}} \mapsto \underline{\underline{q}}^{\mathbb{N}}
$$

- where \bar{k} is an algebraic closure of $k \stackrel{\text { def }}{=} F_{v} ; G_{v} \stackrel{\text { def }}{=} \operatorname{Gal}(\bar{k} / k)$.

Key point: The Θ-link is compatible with the isomorphism

$$
G_{v} \xrightarrow{\sim} G_{v}
$$

between the Galois groups G_{v} on either side of the Θ-link, relative to the natural actions on $\mathcal{O}_{\bar{k}}^{\times}$. At good nonarchimedean/archimedean v of F, one can give an analogous definition, by applying the product formula.

Remark: It is only possible to define the "walls/barriers" (i.e., from the point of view of the ring structure of conventional ring/scheme theory) constituted by the $\mathfrak{l o g}$-, Θ-links by working with
abstract monoids/...

- i.e., of the sort that appear in a Hodge theater!

Remark: By contrast, the objects that appear in the étale-picture (cf. the diagram below!) - i.e., the portion of the log-theta-lattice constituted by the

arithmetic fundamental groups/Galois groups

- have the power to

slip through these "walls"!

Various versions of "Kummer theory" - which allow us to relate the following two types of mathematical objects:
abstract monoids $=$ Frobenius-like objects and arith. fund. gps./Galois groups $=$ étale-like objects

- play a very important role throughout IUTeich! Moreover, the transition Frobenius-like \rightsquigarrow étale-like
may be regarded as a global analogue over number fields of the computation - i.e., via "cartesian coords. \rightsquigarrow polar coords." - of the classical Gaussian integral

$$
\int_{-\infty}^{\infty} e^{-x^{2}} d x=\sqrt{\pi} \quad\left(=\text { "weight } \frac{1}{2} "!\notin \mathbb{Q} \cdot \pi^{\mathbb{Z}} \ni \zeta(n \in 2 \cdot \mathbb{Z})\right)!
$$

Indeed, the coord. trans. $e^{-r^{2}} \rightsquigarrow u$ that appears in this computation

$$
\begin{aligned}
2 \cdot\left(\int e^{-x^{2}} d x\right)^{2} & =2 \cdot \iint e^{-x^{2}-y^{2}} d x d y=\iint e^{-r^{2}} \cdot 2 r d r d \theta \\
& =\iint d\left(e^{-r^{2}}\right) d \theta=\iint d u d \theta
\end{aligned}
$$

is quite similar in form to the Θ-link!

$$
\begin{gathered}
\text { arith. hol. } \\
\text { str. } \Pi_{v} \\
\hline
\end{gathered}
$$

| arith. |
| :---: | :---: | :---: |
| hol. |
| str. |
| Π_{v} |$\quad-$| mono- |
| :---: |
| analytic |
| core G_{v} |$\quad-$| arith. |
| :---: |
| hol. |
| str. |
| Π_{v} |

> arith. hol.
> str. Π_{v}

Main objects to which Kummer theory is applied (cf. LHS of $\underline{\Theta \text {-link! }}$):
(a) gp. of units $\mathcal{O}_{\bar{k}}^{\times} \curvearrowleft \widehat{\mathbb{Z}}^{\times} \quad$ (nonarch. v)
(b) values of theta fn .
$\left.\Theta\right|_{l \text {-tors }}=\left\{\underline{\underline{q}}^{j^{2}}\right\}_{j=1, \ldots, l *}(\operatorname{bad}$ nonarch. $v)$
(c) a sort of "realification" of the number field $F\left(\supseteq F^{\times}\right)$

Main focus of the theory is to protect the cyclotomes $(\cong \widehat{\mathbb{Z}}(1))$ contained in the monoids where (b), (c) appear from the indeterminacy " $\curvearrowleft \widehat{\mathbb{Z}}^{\times}$", i.e., cyclotomic rigidity!

Case of (b) : theory of étale theta $\mathrm{fn} . \quad \Longrightarrow \quad$ cyclo. rig.
Case of (c) : elem. alg. no. theory $\quad \Longrightarrow \quad$ cyclo. rig.
The Kummer theory of (b), (c) is well-suited to the resp. portions of a Hodge theater where the symmetries act (cf. the chart below)!

This state of affairs closely resembles the (well-known) elementary theory of the "functions" associated to the various symmetries of the classical upper half-plane \mathfrak{H} (cf. the chart below)!

	The classical upper half-plane \mathfrak{H}	$\Theta^{ \pm e l l} \mathbf{N F}$-Hodge theaters in IUTch
(Cuspidal) add. symm.	$\begin{aligned} & z \mapsto \quad z+a, \\ & z \mapsto-\bar{z}+a \quad(a \in \mathbb{R}) \end{aligned}$	$\begin{gathered} \mathbb{F}_{l}^{\rtimes \pm_{-}} \\ \text {symmetry } \end{gathered}$
"Functions" assoc. to add. symm.	$q \stackrel{\text { def }}{=} e^{2 \pi i z}$	$\begin{aligned} & \left.\Theta\right\|_{l \text {-tors }} \\ & \quad=\left\{\underline{\underline{q}}^{j^{2}}\right\}_{j=1, \ldots, l *} \end{aligned}$
(Nodal/toral) mult. symm.	$\begin{aligned} & z \mapsto \frac{z \cdot \cos (t)-\sin (t)}{z \cdot \sin (t)+\cos (t)} \\ & z \mapsto \frac{\bar{z} \cdot \cos (t)+\sin (t)}{\overline{\bar{z} \cdot \sin (t)-\cos (t)} \quad(t \in \mathbb{R})} \end{aligned}$	$\begin{gathered} \mathbb{F}_{l}^{*}- \\ \text { symmetry } \end{gathered}$
"Functions" assoc. to mult. symm.	$w \stackrel{\text { def }}{=} \frac{z-i}{z+i}$	representation of elts. of no. fld. F via Belyi maps

In fact, this portion of IUTeich closely resembles, in many respects (cf. the chart below!), Jacobi's identity

$$
\theta(t)=t^{-1 / 2} \cdot \theta(1 / t)
$$

- which may be thought of as a sort of function-theoretic version of the Gaussian integral that appeared in the discussion above - concerning the classical theta function on the upper half-plane

$$
\theta(t)=\sum_{n=-\infty}^{\infty} e^{-\pi n^{2} t} .
$$

IUTeich	Theory of Jacobi's identity
rigidity properties of étale theta fn.	invariance of Gaussian distrib. w.r.t. Fourier transform
the indeterminacy $\mathcal{O}_{\bar{k}}^{\times} \quad \curvearrowleft \mathbb{Z}^{\times}$	unit factor in Fourier transform $\int(-) \cdot e^{i t}, t \in \mathbb{R}$
proof of rig. properties via quad'icity of theta gp. $[-,-]$	proof of Fourier invariance via quad'icity of exp. of Gauss. dist.
$\left.q^{q^{2}}\right\}_{j=1, \ldots, l *}$	Gaussian expansion of theta fn.
Abs. anab. geom. applied to rotation of \boxplus, \boxtimes via log-link	Analytic continuation ∞ the rotation $\left(\begin{array}{c}0 \\ -1 \\ -1\end{array}\right) \Longleftrightarrow t \mapsto \frac{1}{t}$
Local/global functoriality of abs. anab. algorithms, Belyi cuspidalization	Analytic continuation to the entire upper half-plane

One way to interpret Jacobi's identity

$$
\theta(t)=t^{-1 / 2} \cdot \theta(1 / t)
$$

concerning the classical theta function on the upper half-plane

$$
\theta(t)=\sum_{n=-\infty}^{\infty} e^{-\pi n^{2} t}
$$

is as follows: the property of being representable, in a neighborhood of ∞, by a series in which each nonconstant summand is a rapidly decreasing function continues to hold - somewhat mysteriously! - even after analytic continuation

$$
\infty \leadsto 0!
$$

This phenomenon corresponds to the global realization of the expression

$$
"\left\{\underline{\underline{q}}^{j^{2}}\right\}_{j=1, \ldots, l *} "
$$

discussed in $\S 1$!

§4. Inter-universality and Anabelian Geometry

Note that the $\mathfrak{l o g}$-, Θ-links are not compatible with the ring structures

$$
\log _{v}: \mathcal{O}_{\bar{k}}^{\times} \rightarrow \bar{k}, \quad\left(\left.\Theta\right|_{l-\text { tors }}\right)^{\mathbb{N}}=\left\{\underline{\underline{q}}^{j^{2}}\right\}_{j=1, \ldots, l^{*}}^{\mathbb{N}} \mapsto \underline{\underline{q}}^{\mathbb{N}}
$$

in their domains and codomains, hence are not compatible, in a quite essential way, with the scheme-theoretic "basepoints" and

$$
\text { Galois groups } \quad\left(\subseteq \operatorname{Aut}_{\text {field }}(\bar{k})!!\right)
$$

that arise from ring homomorphisms! That is to say, when one passes to the "opposite side" of the $\mathfrak{l o g}$-, Θ-links,

$$
\text { " } \Pi_{v} \text { " and " } G_{v} \text { " }
$$

only make sense in their capacity as abstract topological groups (cf. the outer autom. of absolute Galois groups induced by an autom. of a field)!
\Longrightarrow As a consequence, in order to compute the relationship between the ring structures in the domain and codomain of the $\mathfrak{l o g}$-, Θ-links, it is necessary to apply anabelian geometry! At the level of previous papers by the author, we derive the following Main Theorem by applying the results and theory of

- Semi-graphs of Anabelioids • The Geometry of Frobenioids I, II
- The Étale Theta Function ... • Topics in Absolute Anab. Geo. III
concerning

absolute anabelian geometry and various rigidity properties of the étale theta function.

Main Theorem: One can give an explicit, algorithmic description, up to mild indeterminacies, of the $\mathbf{L H S}$ of the Θ-link in terms of the "alien" ring structure on the RHS of the Θ-link.

Interpretation: Even under circumstances where one is only linked by a "narrow pipe" (i.e., such as an astronaut on a space vessel or miners working in an underground mine), it is possible to reconstruct and grasp the situation on the "other side" by making wise use of the limited information available.

Key points:

- the coricity (i.e., coric nature) of $G_{v} \curvearrowright \mathcal{O}_{\bar{k}}^{\times}$!
- various versions of "Kummer theory", which allow us to relate the following two types of mathematical objects (cf. the latter portion of $\S 3$):

> abstract monoids $=\underline{\text { Frobenius-like objects and }}$ $\underline{\text { arith. fund. gps. } / \text { Galois groups }}=\underline{\text { étale-like objects. }}$

Here, we recall the analogy with the computation of the Gaussian integral:
definition of log-, Θ-link, log-theta-lattice \longleftrightarrow cartesian coords. algor. descr. via abs. anab. geom. \longleftrightarrow polar coords. crucial rigidity of cyclotomes $(\cong \widehat{\mathbb{Z}}(1)) \longleftrightarrow$ coord. trans. via $\mathbb{S}^{1} \curvearrowright$

- the log-link plays an indispensable role in the context of realizing the action on the "log-shell" $=$ "container"

$$
\log \left(\mathcal{O}_{\bar{k}}^{\times}\right) \curvearrowleft\left\{\underline{\underline{q}}^{j^{2}}\right\}_{j=1, \ldots, l *}
$$

... but various technical difficulties arise as a consequence of the noncommutativity of the log-theta-lattice.
$\Longrightarrow \quad$ in the subsequent "volume computation", one only obtains an inequality (i.e., not an equality)!

By performing a volume computation, as discussed in $\S 1$, concerning the output of the algorithms of the above Main Theorem, one obtains (cf. the class field theory, p-adic Hodge theory, algebraic geom. related to abelian vars., etc. that appear in Faltings' pf. of the Mordell Conjecture!):

Corollary: The "Szpiro Conjecture" (\Longleftrightarrow "ABC Conjecture").

$$
\mathrm{ht}_{E} \leq(1+\epsilon)\left(\log ^{-d i f f}{ }_{F}+{\left.\log -\text { cond }_{E}\right)+ \text { constant }}^{2}\right.
$$

Here, we recall the arguments of §1:" $N \cdot h^{\text {LHS }}=h^{\text {RHS" }}(\longleftrightarrow \Theta$-link!), $" N \cdot h \leq h+C "(\longleftrightarrow$ Main Theorem + volume computation $)$!

This portion of the theory resembles, in many respects, the theory surrounding Jacobi's identity, as discussed at the end of $\S 3$:

IUTeich	Theory of Jacobi's identity
Changes of universe, i.e., labeling apparatus for sets	Changes of coordinates, i.e., labeling apparatus for points of a space
computation of volume of log-shell $\log (-)$	computation via polar coordinates of Gaussian integral $\int_{-\infty}^{\infty} e^{-x^{2}} d x=\sqrt{\pi}$
Startling application to diophantine geometry	Startling improvement in computational accuracy of values of classical theta function

In fact, the " ϵ " that appeared in the above inequality admits an upper bound of the following form:

$$
\left(\mathrm{ht}_{E}\right)^{-\frac{1}{2}} \cdot \log \left(\mathrm{ht}_{E}\right)
$$

Here, the " $\frac{1}{2}$ " is reminiscent of the Riemann hypothesis. Indeed, just as in the case of the Riemann hypothesis, this " $\frac{1}{2}$ " may be thought of as a phenomenon of

"weight $1 / 2 "$

(where the "weight" may be thought of as the " s " of the Riemann zeta function $\zeta(s)$), i.e., a phenomenon that concerns not integral powers of π, but rather the square root of π :

$$
\int_{-\infty}^{\infty} e^{-x^{2}} d x=\sqrt{\pi}
$$

In fact, the computation of this " ϵ " involves quadratic forms of the sort that appear in the Gaussian integral and the theta function; computation of the minimal value of such quadratic forms, i.e., of the roots of such quadratic forms, then gives rise to "square roots", i.e., to the quantity " $\left(\mathrm{ht}_{E}\right)^{-\frac{1}{2}}$ ".

Relative to the analogy with the classical theory concerning hyperbolic curves over p-adic local fields and the geometry of Riemann surfaces over \mathbb{C}, the corresponding inequalities (which may be regarded as expressions of "hyperbolicity") concerning the "volume of a holomorphic structure" computed from outside the holomorphic structure are as follows:

- the degree $=(2 g-2)(1-p) \leq 0$ of the

$$
" \underline{\text { Hasse invariant }}=\frac{1}{p} \cdot d(\underline{\text { Frob. lift. }}) "
$$

in p Teich,
the Gauss-Bonnet Theorem for a hyperbolic Riemann surface S

$$
0>-\int_{S}(\text { Poincaré metric })=4 \pi(1-g) .
$$

Finally, I wish to point out another (more elementary) example of the "spirit of inter-universal geometry" - i.e.,
"of an approach that yields nontrivial results in 'combinatorial' situations in which conventional scheme theory is not available, by performing constructions that are motivated by conventional scheme theory and thus allow one to approximate conventional scheme theory to a substantial extent"

combinatorial anabelian geometry

\rightsquigarrow various results concerning the GT group
to effect that the GT group satsfies analogous properties to $G_{\mathbb{Q}}$ - i.e., without necessarily showing that it is $\cong G_{\mathbb{Q}}$!

